Novel Targets for the Treatment of Chronic Hepatitis B Infection
Hepatitis B viruses

- HBV DNA genome:
 - small (3.2 kb), partial duplex circular DNA
 - RC (relaxed circular) DNA

- Genome replication:
 - Reverse transcription (RT): RNA → DNA

- Antiviral therapy:
 - 1st generation: Lamivudine (LAM), Adefovir
 - 2nd generation: Entecavir (ETV), Tenofovir
- The virus is not cleared, even after long-term therapy: > 50 years therapy needed.
cccDNA & Viral persistence

- A new drug with novel target would block the leakiness of NUC monotherapy.
• HBV Pol-epsilon RNA binding is required.
• HBV Pol inhibits translation via its binding.
• HBV Pol-epsilon RNA interaction represents a novel antiviral target

Cell-based HBV Pol-epsilon RNA Binding Assay

- A small molecule that interferes the Pol-epsilon RNA interaction can be scored.
- HTS-ready cell based assay
Southern blot analysis: HepG2 cell

- We screened > 100,000 compounds via HTS assay.
- Hit compounds inhibit the viral genome replication.

Future work
- Hit optimization to get IC$_{50}$ down to double digit nM range: > 100 fold.

YS 001 IC$_{50}$ = ~ 2 μM

YS 002 IC$_{50}$ = ~ 1.0 μM
HBV infection using HepG2-NTCP cell line
Timelines of Discovery: HBV versus HCV
Evidence for
- Pre-S1 peptide binding protein expressed selectively in primary hepatocytes
- Confer the HBV susceptibility to HepG2 cell

NTCP receptor
- A key transporter for hepatic uptake of bile acids
- Nine transmembrane domain (TM)
- Taurocholic acids inhibits HBV infection vice versa

J. Virol. 88:3273 (2014)
HBV infection using HepG2-NTCP cells

<table>
<thead>
<tr>
<th></th>
<th>cccDNA</th>
<th>Viral RNA</th>
<th>Viral DNA</th>
<th>Infection efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenhui Li</td>
<td></td>
<td></td>
<td></td>
<td>Not determined</td>
</tr>
<tr>
<td>Yan et al., 2014</td>
<td>Yan et al., 2013</td>
<td>Zhong et al., 2013</td>
<td>Yan et al., 2012</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Not mentioned</td>
<td>Estimated value: < 30%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Stephan Urban** | ![Image](image4.png) | ![Image](image5.png) | ![Image](image6.png) | ![Image](image7.png) | Determined by immunofluorescence: approximately 70% (at 2.5% DMSO) |
| Ni et al., 2014 | Nkongolo., 2014 | |

| **Takaji Wakita** | ![Image](image8.png) | ![Image](image9.png) | ![Image](image10.png) | ![Image](image11.png) | Determined by immunofluorescence: approximately 50% (at 3% DMSO) |
| Iwamoto et al., 2014 | Watashi et al., 2014 | |

| **W.-S. Ryu** | ![Image](image12.png) | ![Image](image13.png) | ![Image](image14.png) | ![Image](image15.png) | Determined by immunofluorescence: approximately 70% (at 3% DMSO) |
| (Submitted) | |

References:

- Yan et al., 2014
- Yan et al., 2013
- Zhong et al., 2013
- Yan et al., 2012
- Ni et al., 2014
- Nkongolo., 2014
- Iwamoto et al., 2014
- Watashi et al., 2014

Estimated values and infection efficiency are indicative of the described experiments.
HBV infection using HepG2-NTCP cells: Immunostaining by anti-HBc

- A robust HBV infection system established: > 70% cells infection at 10^4 GEq.
- HBV infection is completely blocked by pre-S1 peptide (MyrCludex B), validating the NTCP-mediated entry.
A precursor of cccDNA, PF-RC DNA, as well as cccDNA was detectable.

Kinetic analysis revealed that precursor-product relationship, as predicted: PF-RC DNA -> cccDNA -> HBV RNAs, -> HBV DNA
Little is known about RC DNA to cccDNA conversion.

- Cellular factors would be attractive antiviral targets for cccDNA control.
1. We established a cell-based assay for HTS screening for HBV packaging inhibitors.

2. A hit from >100,000 chemical library screening was identified: YS001.

3. We established HBV susceptible HepG2-NTCP cell line:
 - Robust, > 70% cells infected.

4. We showed that RC DNA to cccDNA conversion can be now studied.
 - PF-RC DNA, a precursor of cccDNA, detectable
 - Yet-to-be known host factors can be attractive antiviral target for viral clearance.

- Discovery of the NTCP receptor now allowed us to study the full spectrum of the HBV life cycle, including entry and cccDNA conversion.
cccDNA & Viral persistence

- cccDNA
 - Gap-filling
 - Intracellular pathway
 -oretic pathway via Reinfection

- HBsAg
- HBV Pol
- ETV
- RT
- RC DNA
- AN

- NTCP

- It is hoped that multidrug therapy having a novel target will lead to viral clearance
Contributors

- Institut Pasteur Korea / Dr. Windisch Lab
- Chemical library: > 100,000 cpds.